

TETRAHEDRON

Tetrahedron 56 (2000) 3909-3919

Efficient Synthesis of New Phosphono-Substituted Dihydrothiopyrans via Hetero Diels-Alder Reaction, under Thermal and High Pressure Conditions

Hashim Al-Badri,^a Noël Collignon,^{b,*} Jacques Maddaluno^a and Serge Masson^c

^aLaboratoire des Fonctions Azotées et Oxygénées Complexes de l'IRCOF, UPRES-A 6014 CNRS, Université de Rouen,

76821 Mont-Saint-Aignan Cedex, France

^bLaboratoire d'Hétérochimie Organique de l'IRCOF, UPRES-A 6014 CNRS, INSA de Rouen, Place E. Blondel, BP 08,

76131 Mont-Saint-Aignan Cedex, France

^cLaboratoire de Chimie Moléculaire et Thioorganique, UMR 6507 CNRS, Université de Caen et ISMRA, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex, France

Received 3 February 2000; accepted 17 April 2000

Abstract—New α -phosphono- β -aryl- or β -heteroaryl-substituted α , β -unsaturated dithioesters **2** were easily prepared from diethyl phosphonodithioacetate **1** and used as thiadienes in thermal or high pressure hetero Diels–Alder cycloadditions with enol and thioenol ethers. The resulting new phosphono 3,4-dihydro 2*H*-thiopyrans **3** were isolated in excellent yields and with a *cis*- or *trans*-diastereoselectivity depending on the conditions of the reaction as well as the structure of the reagents. Some of the thiopyrans **3** were also favourably synthesized via a domino Knoevenagel–hetero Diels–Alder sequence. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

In contrast to their carboxylic analogues, which rarely react as dienes in hetero Diels–Alder reactions,¹ α , β -unsaturated carbodithioic acid esters generally show good reactivity as heterodienes in cycloadditions with various dienophiles, under thermal and Lewis acid conditions.^{2–5} Moreover, and as previously described by us, the first members of the series readily dimerize at low temperature through a head-to-tail [4+2] cyclocondensation, leading to the corresponding dihydrothiopyrans with high stereoselectivity.⁶

Its efficiency and versatility combined with its regio and stereochemical control render the thia Diels–Alder route an extremely attractive approach to dihydrothiopyrans,^{7,8} which are potential precursors of a wide range of thiohetero-cycles exhibiting a variety of interesting biological properties.^{9–14}

To the best of our knowledge, no example of phosphonosubstituted dihydrothiopyrans has been reported to date. As an extension to our recent work on the hetero Diels– Alder reaction of α -carbonylated styrylphosphonates,¹⁵ we decided to study a similar synthetic way to new 5-diethyl-

* Corresponding author. Fax: +33-235-522959;

e-mail: ncollign@ircof.insa-rouen.fr

Scheme 1.

phosphono-6-ethylthio-3,4-dihydro-2*H*-thiopyrans **3** variously substituted at the 2 and 4 positions, as shown in the retrosynthetic Scheme 1. Following this strategy, compounds **3** were obtained by [4+2] cycloadditions of vinyl ethers or thioethers with α , β -unsaturated carbodithioic acid esters **2**, prepared—or in situ generated—by Knoevenagel-type reactions of the readily available triethyl phosphonodithio-acetate **1**.¹⁶

As observed for the phosphono oxadienes,¹⁵ the presence of the electron-withdrawing phosphono group at the carbon 2 of the thiadienes **2** should favour their reactivity with electron-rich dienophiles (inverse-electron-demand)¹⁷ such as enol or thioenol ethers (X=O or S), by lowering the energy

0040-4020/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(00)00297-0

Keywords: diastereoselection; hetero Diels–Alder reactions; phosphonates; thiopyrans; domino reactions.

Scheme 2.

of the LUMO of the diene, which facilitates its overlap with the HOMO of the dienophile.¹⁸

Results and Discussion

Synthesis of α -phosphono- α , β -unsaturated dithioesters 2

First, we wish to report here the (*E*)-stereoselective synthesis of several new α -diethylphosphonyl- β -aryl- or β -heteroaryl-substituted α , β -unsaturated dithioesters **2** by reacting triethyl phosphonodithioacetate **1**[†] with aromatic or heteroaromatic bis-morpholino aminal derivatives **4**, following the conditions described by Sakoda et al.²¹ (Scheme 2 and Table 1). The reaction can be conveniently monitored by ³¹P NMR spectroscopy.

It is worthy of note that phosphonates 2 could be obtained directly from 1 and the corresponding aldehydes by using the conventional Knoevenagel reaction conditions,²² but the yield of purified product was often lowered by the presence of impurities such as the corresponding Horner–Wadsworth–Emmons olefination derivatives. Moreover, the aminal method was totally (*E*)-stereoselective, whereas the formation of a few percentage of the (*Z*)-isomer of 2 was occasionally observed using the conventional conditions.

Having a representative range of the new phosphono-substituted α , β -unsaturated carbodithioic acid esters **2** of homogeneous (*E*)-configuration available, we studied their cycloaddition with some electron-rich dienophiles.

Table 1. S	ynthesis and	³¹ P NMR	data of	phosphonates 2
------------	--------------	---------------------	---------	----------------

Product ^a	^{31}P (CDCl ₃) δ (ppm)	Yield (%) ^b	
(E)- 2 a	13.1	86	
(E)- 2b	11.5	88	
(<i>E</i>)-2c	12.1	85	
(E)-2d	13.8	73	
(E)-2e	11.9	89	
(E)- 2f	11.4	81	

^a The (*E*)-geometry of the C₂==C₃ double bond in **2** was assigned by ${}^{3}J_{PH3}$ (~24 Hz) coupling constant measurements in ¹H NMR spectra^{23,24} (see Experimental).

^b Yield in pure product, isolated in an oily form. Purification by column chromatography over silica gel [eluent: Et₂O/CH₂Cl₂ (95:5), for 2a, 2b, 2d; Et₂O, for 2c; Et₂O/CH₂Cl₂ (90:10), for 2e, 2f]. Purity controlled and structures confirmed by ¹H and ¹³C NMR spectroscopy. Satisfactory microanalyses were obtained.

Hetero Diels–Alder reaction of phosphonates 2 with enol and thioenol ethers

We have considered the cycloaddition of phosphonates **2a–f** with the two vinyl ethers **5a** and **5b**, and that of phosphonate **2b** with the vinyl thioether **5c**. The reactions were performed under different conditions of temperature and pressure, leading to new 5-diethylphosphonyl-3,4-dihydro-2*H*-thiopyrans **3a–m** (Scheme 3), isolated as a mixture of *trans-* and *cis*-diastereomers (*t*-**3a–m** and *c*-**3a–m** in Table 2). The progress of the reaction was monitored by ³¹P NMR spectroscopy. Generally, the commercially available dienophiles were used in large excess (10 mol equiv.) and thus served as the reaction solvent.

Scheme 3.

[†] Ethyl *O*,*O*-diethylphosphonodithioacetate **1** was synthesized in multigram scale from the commercially available *O*,*O*-diethylcyanomethylphosphonate, by addition of EtSH and dry HCl, followed by sulfhydrolysis of the intermediate thioimidoester hydrochloride, using the procedure developed by Marvel et al.,¹⁹ for the synthesis of aliphatic dithioesters. The physical and analytical data of the prepared compound **1** were in full agreement with an earlier report.²⁰

Table 2. Conditions, selectivities and yields of the synthesis of cycloadducts 3a-m

Entry	XR	Ar	Products ^a	Method ^b	Time ^c (<i>t</i> /h)	Selectivity ^d trans/cis	Yield ^e (%)
1	OEt	Ph	t-3a/c-3a	А	10	15:85	85
2				В	48	68:32	88
3		$4-NO_2-C_6H_4$	t-3b/c-3b	А	2	15:85	86
4		2 0 1		В	24	64:36	90
5		$4-CF_3-C_6H_4$	t-3c/c-3c	А	3	16:84	87
6		5 0 1		В	60	75:25	87
7		4-MeO-C ₆ H ₄	t-3d/c-3d	А	12	16:84	79
8		0 4		В	96	60:40	85
9		3-Pyr	t-3e/c-3e	А	6	19:81	87
10				В	18	15:85	89
11		4-Pyr	t-3f/c-3f	А	2.5	81:19	82
12		5		В	52	15:85 ^f	84
13	OBu^t	Ph	t-3g/c-3g	А	24	22:78	79
14			0 0	В	72	25:75	84
15		$4-NO_2-C_6H_{ub}$	t-3h/c-3h	А	11	21:79	85
16		2 0 40 1		В	48	24:76	88
17		$4-CF_3-C_6H_4$	t-3i/c-3i	А	12	32:68	82
18		5 0 4		В	72	39:61	85
19		4-MeO-C ₆ H ₄	t-3j/c-3j	А	_ ^g	_	_
20		0 4	0 0	В	192	22:78	76
21		3-Pyr	t-3k/c-3k	А	6	31:69	90
22		•		В	48	16:84	82
23		4-Pyr	t-31/c-31	А	4	80:20	88
24				В	24	15:85 ^g	88
25	SEt	4-NO ₂ -C ₆ H ₄	<i>t</i> -3m/ <i>c</i> -3m	А	6	7:93	89
26		2 .		В	48	86:14	83

^a Products isolated as a mixture of *trans*- and *cis*-diastereomers.

A: reaction is sealed tube, at 125°C; B: reaction under 11 kbar, at 20°C.

^c Time for the complete consumption of phosphonate **2**, monitored by ³¹P NMR spectroscopy. ^d Determined on the crude mixture, by ³¹P and/or ¹H NMR integration measurements.

^e Yield of purified oily products. Purification by flash chromatography over silica gel [eluent: $Et_2O/MeOH$ (95:5) for **3a**–1; Et_2O/CH_2Cl_2 (70:30) for **3m**]. Purity checked and structures established by ¹H and ¹³C NMR spectroscopy. Satisfactory microanalyses or HRMS were obtained.

^f During the work-up, the excess of reagents has to be removed at room temperature in order to avoid the thermal alteration of the diastereomeric ratio of the product.

^g Incomplete reaction, after 10 days.

In the first set of experiments, we examined the ability of phosphonates 2 to react with ethyl vinyl ether 5a (entries 1-12, Table 2), either under thermal conditions in a sealed tube at 125°C (method A), or at high pressure (11 kbar) at 20°C (method B). For example, the reaction between the *p*-nitrophenyl-substituted phosphonothiadiene **2b** and an excess of dienophile 5a reached completion after 2 h following method A, giving quantitatively the crude cycloadduct 3b, as a mixture of diastereomers t-3b/c-3b in the ratio 15:85 (entry 3); this ratio was not altered after

purification by flash chromatography over silica gel (eluent: ether/methanol, 95:5), yielding 86% of the purified product.

The dihydrothiopyran structure of the cycloadduct was unambiguously assigned by ¹H and ¹³C NMR spectroscopy (see Experimental), and the relative configuration of each diastereomer was deduced from ¹H-¹H NOESY experiments. Thus, in the above example, an NOE effect was observed between the anomeric proton H-2 and proton H-4 for the major component, establishing its cis-configuration; conversely, the NOE effect between the proton H-2 and the ortho-aromatic protons for the minor component confirmed its relative trans-configuration. Moreover, as commonly accepted, 25-27 we assume that each diastereomer adopts a half-chair form in a rapid and equilibrated interconversion (Scheme 4).[‡]

Then, in order to evaluate the effect of reaction conditions, we exposed the same starting reagent mixture (2b+5a) to high pressure (method B): the reaction was complete after 24 h at room temperature; more interestingly, the diastereoselectivity was reversed in favour of the trans-diastereomer (entry 4).

As we observed in the case of phosphonodihydropyrans,¹⁵ we verified here too that the ¹³C NMR chemical shift of the C-2 anomeric carbon can be used as a criterion for the relative configurational assignment of the phosphonodihydrothiopyrans of type **3**, by using the previously established relationship $\delta_{C2}^{trans} < \delta_{C2}^{cis}$ (see Experimental).

Scheme 5.

In order to check the thermal stability of the cycloadducts **3b**, we heated the diastereomeric mixture resulting from the above experiment (entry 4); the corresponding 64:36 *trans/ cis* ratio remained unchanged after several hours at 125° C. Moreover, having verified beforehand the configurational stability of the starting phosphonates (*E*)-**2** under the same thermal conditions, we could assume that the studied cycloadditions of **2b** with **5a** were kinetically controlled, and that the *trans*-cycloadduct was formed via an *endo*-transition state (path a), whereas the *cis*-isomer resulted from an *exo*-transition state (path b), as represented in Scheme 5.

The preferred *exo*-approach observed for the pair of reagents **2b/5a** under thermal conditions is worth underlying. Actually, with the same dienophile and under the same reaction conditions, α -keto-(*E*)-styrylphosphonates generally reacted via a preferred *endo*-transition structure, but with a poor diastereoselectivity;¹⁵ in the system studied here, the weakness of the secondary orbital interactions between the oxygen atom of the dienophile and the weakly polarized C=S double bond²⁸ of the thiadiene **2a**, possibly

Scheme 6.

renders the congested *endo*-approach less favourable than the *exo*-one. However, as expected and as observed in the case of phosphonooxadienes, the *endo*-approach was preferred anew for the phosphonothiadiene, under high pressure (entry 4), which usually favours the more compact transition state.^{29–32}

The other thiabutadienes of the aromatic series (**2a**, **2c** and **2d**) reacted with **5a** to give the expected adducts **3a**, **3c** and **3d** in excellent yields and with a selectivity very similar to that characterizing the pair **2b/5a**, i.e. a *cis*-diastereoselectivity under thermal conditions, and a *trans* one at high pressure. Only the reaction time varied significantly with the nature of the substituent on the aromatic ring. As expected for such an inverse-electron-demand cycloaddition reaction, an electron-withdrawing substituent as NO₂ or CF₃ increases the rate of the reaction (compare entry 1 with entry 3 or 5), whereas an electron-donating group as MeO slowed the reaction down (entries 7 and 8). We verified here too the thermal stability of the related cycloadducts.

More contrasted results were obtained with the pyridylsubstituted dienes 2e-f, which showed a good reactivity with 5a (entries 9–12), leading to the corresponding adducts 3e-f, but with an unexpected selectivity. Thus, under thermal conditions, whereas the *cis*-isomer of the 3-pyridyl-substituted adduct 3e (entry 9) predominated as for the above aromatic series, the 4-pyridyl-substituted **3f** was formed with a *trans*-diastereoselectivity (entry 11); just as surprising, under high pressure, the predominance of the cisisomers was observed for these two adducts, which were obtained in an identical 15:85 trans/cis ratio (entries 10 and 12). However, we found that the *trans/cis* ratio of the 4-pyridyl adduct obtained at high pressure (entry 12) changed from 15:85 to 80:20, when heated for 3 h at 125°C. This result proves the thermal lability of the cycloadduct 3f and suggests that the 81:19 trans/cis ratio observed using method A (entry 11) represents the ratio of the thermodynamical mixture, in which the trans-isomer allows the anomeric effect³³ to take place with a minimum of steric hindrance, as shown in the left-side conformation of trans-3 (Scheme 4). The easy isomerization of c-3f into the more stable *t*-**3f** adduct under thermal conditions seems to be due to a retro Diels-Alder reaction, rather than a basepromoted deprotonation process.§ Moreover, in order to

[§] The 15:85 *t*-**3f**/*c*-**3f** diastereomeric mixture proved to be unchanged, at room temperature, in the presence of bases as pyridine, 4-picoline, or piperidine. We gratefully acknowledge one of the referees, who suggested to us such an experiment.

explain the unexpected predominance of the cis-isomers in the mixtures resulting from the synthesis of cycloadducts **3e** and **3f** at high pressure, we considered a possible isomerization of the corresponding dienes, under the reaction conditions. Actually, whereas the dienes (E)-2a-d of the aromatic series were configurationally stable at 11 kbar and 20°C after 48 h, the pure dienes (E)-2e and (E)-2f were transformed, under the same conditions, into a mixture of (E)-2e/(Z)-2e^{\parallel} and (E)-2f/(Z)-2f,^{\P} respectively, in a ratio of \sim 98:2, measured after pressure release. If we assume that the (Z)-isomers of these mixtures, taken to be equilibrated at 11 kbar,** reacted more readily, for steric reasons, than their (E)-partners, and that the related addition occured via the endo-approach (path d, Scheme 5) as usually proposed at high pressure, we could thus explain the cis-stereoselectivity of the reactions.

Next, we studied the cycloaddition of dienes 2 with *tert*butyl vinyl ether **5b** (entries 13–24, Table 2). As expected, the bulky dienophile **5b** reacted generally more slowly than its ethyl analogue 5a under thermal, as well as high pressure conditions. Moreover, for the aromatic series (entries 13-20) the *cis*-adducts predominated under thermal conditions, probably owing to the steric hindrance of the Bu^t group, which favours the exo-approach (path b, Scheme 5).34 This same argument probably accounts for the exo-approach preference under 11 kbar, and the trans/cis ratios very similar to the ones recorded under thermal conditions. In the heteroaromatic series at last (entries 21-24), the cis-isomer of the 3-pyridyl-substituted adduct 3k predominated under conditions A or B (entries 21 and 22), as in the above aromatic series, but for the entry 22, the cis-isomer could result also from the endo-cycloaddition (path d, Scheme 5) of the (Z)-2e diene formed in situ under high pressure, as established above. The 4-pyridyl-substituted diene 2f reacted rapidly and completely with **5b** to give the expected cycloadduct **31**, but with a *trans*-diastereoselectivity under thermal conditions and with a *cis*-one at 11 kbar. Moreover, when the t-3l/c-3l mixture obtained under high pressure (entry 24) was heated for 4 h at 125°C, its diastereomeric ratio changed from 15:85 into 80:20, which likely represents the thermodynamical trans/cis ratio for this adduct, as it was discussed above for 3f. Consequently, we assume that the preferred transition state for the cycloaddition of (E)-2f with the bulky dienophile 5b was still the exo-one, using method A or B. However, the predominant *cis*-isomer formed in the first case likely isomerized under the thermal conditions into the more stable *t*-31 isomer. Such an isomerization did not occur at high pressure and 20°C, but in this case, the c-3l isomer might result too from the endo-addition of the diene (Z)-2f formed in situ.

Finally, we tested the behaviour of the dienophile 5c in its

reaction with the diene **2b**. A very good reactivity and an excellent *cis*-diastereoselectivity were observed for this pair of reagents under thermal conditions (entry 25), giving access to a new interesting 3,4-dihydro-2*H*-thiopyran **3m** bearing the ethylthio substituent at the position $2^{\dagger\dagger}$ As expected, under 11 kbar, the selectivity was reversed in favour of the *trans*-isomer (entry 26). Having verified the stability of the 86:14 *t*-**3m**/*c*-**3m** mixture obtained at high pressure, when heated for 6 h at 125°C, we concluded that the remarkable *cis*-diastereoselectivity observed under thermal conditions resulted from an *exo*-approach of the two reagents, which preferred an *endo*-one at high pressure, as usually accepted.

One-pot synthesis of phosphonodihydrothiopyrans 3 from 1, through a domino Knoevenagel-hetero Diels-Alder sequence

As firstly introduced by Tietze et al.,³⁶ the synthesis of some dihydropyrans can be performed by a three-component reaction protocol, leading to the expected cycloadduct through the so called domino Knoevenagel–hetero Diels–Alder reaction, by using an activated methylene compound, an aldehyde and an electron-rich alkene as reagents.³⁷ Recently, this procedure allowed us to improve significantly the yield of the synthesis of phosphonodihydropyrans.¹⁵ To the best of our knowledge, such a sequence has not been previously employed in thia Diels–Alder synthesis,⁷ and therefore we decided to use it for a one-pot synthesis of phosphonodihydrothiopyrans **3** from phosphonodithio-acetate **1**, as represented in Scheme 6.

A toluene solution of the phosphonate 1, of the suitable aldehyde 6 and dienophile 5 was introduced into a reactor equipped with a Dean–Stark separator, then a few drops of piperidine were added and the mixture was refluxed, while the progress of the reaction was monitored by ³¹P NMR spectroscopy. The procedure has been exploited for the synthesis of the cycloadducts **3b**, **3c**, **3e**, **3f** and **3m** and the results are reported in the Table 3.

The yields of isolated cycloadducts **3** synthesized by the domino-sequences were excellent and higher than the overall yields calculated for the corresponding sequences in two separated reactions. As expected, the selectivities observed by using this one-pot protocol were very similar to that reported for the corresponding separate cycloadditions, carried out under thermal conditions (method A, Table 2). Moreover, the excellent *cis*-diastereoselectivity (de=88%) obtained for the synthesis of the cycloadduct **3m** deserves to be underlined (entry 5).

Conclusion

In this work, we studied a thia-hetero Diels–Alder approach to new 5-diethylphosphono-6-ethylthio-3,4-dihydro-2*H*thiopyrans **3**, variously substituted at 2 and 4 positions. Efficient and diastereoselective syntheses of the cycloadducts **3** were achieved starting from the readily available

^{||} In ³¹P NMR spectroscopy, the signal of the (Z)-isomer of 2e was observed at 10 ppm.

[¶] In ³¹P NMR spectroscopy, the signal of the (Z)-isomer of **2f** was observed at 9.4 ppm.

^{**} The (*Z*)-isomers of the pyridyl-substituted dienes **2e** and **2f** might be formed by the decomposition of a transient ionic dimer resulting from the Michael self-condensation of the corresponding (*E*)-isomers, the overall process being equilibrated under 11 kbar. Such unusual high-pressurepromoted Michael/retro-Michael isomerizations are currently being studied in our laboratory; results will be published in due course.

^{††} In carbohydrate chemistry, such alkylthio substituent have been favourably used in glycosylation reactions.³⁵

Entry	Products ^a	Time ^b (t/h)	Selectivity ^c trans/cis	Yield (%) ^d (Calcd Yield) ^e	
1	<i>t</i> -3 b / <i>c</i> -3 b	48	14:86	89 (74.8)	
2	<i>t</i> -3c/ <i>c</i> -3c	120	15:85	81 (73.9)	
3	<i>t</i> -3e/ <i>c</i> -3e	48	17:83	89 (77.4)	
4	t-3f/c-3f	48	81:19	86 (66.4)	
5	<i>t</i> -3m/ <i>c</i> -3m	120	6:94	87 (78.3)	

Table 3. Synthesis of cycloadducts 3b, 3c, 3e, 3f and 3m by domino Knoevenagel-hetero Diels-Alder reaction

^a Products isolated as a mixture of *trans*- and *cis*-diastereomers.

^b Time for the complete consumption of phosphonate **1**, monitored by ³¹P NMR spectroscopy.

^c Determined on the crude mixture, by ³¹P and/or ¹H NMR integration measurements.

^d Yield of purified oily products. Purification by flash chromatography over silica gel [eluent: Et₂O/MeOH (95:5) for **3b**, **3c**, **3e**, **3f**; Et₂O/CH₂Cl₂ (70:30) for **3m**]. Purity checked and structures established by ¹H and ¹³C NMR spectroscopy. Satisfactory microanalyses or HRMS were obtained.

^e Calculated overall yield for the sequence in two separate reactions.

diethyl phosphonodithioacetate 1, either in two separate reactions via the new α -phosphono- α , β -unsaturated carbodithioesters 2, or in a sole reactor, by a domino Knoevenagel-hetero Diels-Alder reaction sequence.

Experimental

General

Solvents and reagents were purchased from common commercial suppliers and purified by conventional methods prior to use. High-pressure cycloaddition reactions were performed in a Unipress piston-cylinder apparatus for pressures up to 14 kbar. TLC was performed on Merck 60F-254 silica gel plates and column chromatography over silica gel SI 60 (230-400 mesh). Gas-liquid chromatography (GLC) was performed on a Varian 3300 chromatograph with a 15 m Megabore OV 101 column. Elemental microanalyses were carried out on a Carlo Erba EA 1110 analyser. HRMS measurements were performed under electronic impact at 70 eV on a JEOL AX 500 spectrometer. NMR spectra were recorded on a Bruker DPX-300 spectrometer operating at 300 MHz for proton, 75.4 MHz for carbon, and 121.5 MHz for phosphorus; chemical shift (δ) are expressed in ppm relative to TMS for ¹H and ¹³C nuclei and to H_3PO_4 for ³¹P nucleus; coupling constants (J) are given in Hz; coupling multiplicities are reported using conventional abbreviations.

General procedure for the synthesis of phosphonodithioesters 2

To a solution of phosphonate **1** (10 mmol) and chloroacetic acid (1.85 g, 20 mmol) in toluene (15 cm³) was added the appropriate bis(morpholino) aminal $4^{\ddagger\ddagger}$ (10 mmol). The mixture was stirred under nitrogen atmosphere at 20°C for 48 h, the reaction being monitored by ³¹P NMR spectroscopy. The reaction mixture was then hydrolysed by water (20 cm³) and the residue obtained after the usual work-up was purified as indicated in Table 1, leading to pure thiadiene **2**, isolated as a deep orange liquid.

Ethyl (*E*)-2-diethoxyphosphoryl-3-phenylpropendithioate (*E*)-2a. δ_P 13.10; δ_H 1.17–1.34 (9H, m, CH₃CH₂S and CH₃CH₂OP), 3.23 (2H, q, J=7.4 Hz, CH₃CH₂S), 4.10 (4H, qui, J=7.2 Hz, CH₃CH₂OP), 7.42 (1H, d, J=23.8 Hz, H-C3), 7.18–7.30 and 7.44–7.51 (5H, 2m, $H_{\rm arom}$.); $\delta_{\rm C}$ 11.52 (s, CH₃CH₂S), 15.95 (d, J=7.1 Hz, CH₃CH₂OP), 30.60 (s, CH₃CH₂S), 62.79 (d, J=5.1 Hz, CH₃CH₂OP), 128.20, 129.80 and 130.10 (3s, *o*-, *m*-, *p*-C_{arom}.), 133.10 (d, J=20.1 Hz, *i*-C_{arom}.), 137.30 (d, J=177.3 Hz, C₂), 142.45 (d, J=8.7 Hz, C₃), 227.50 (d, J=9.4 Hz, C=S); Anal. Calcd for C₁₅H₂₁O₃PS₂: C, 52.31; H, 6.15; S 18.62. Found: C, 51.92; H, 5.98; S 18.42.

Ethyl (*E*)-2-diethoxyphosphoryl-3-(4-nitrophenyl)propendithioate (*E*)-2b. $\delta_{\rm P}$ 11.50; $\delta_{\rm H}$ 1.22–1.38 (9H, m, CH₃CH₂S) and CH₃CH₂OP), 3.20 (2H, q, *J*=7.4 Hz, CH₃CH₂S), 4.12 (4H, qui, *J*=7.2 Hz, CH₃CH₂OP), 7.50 (1H, d, *J*=23.5 Hz, *H*-C3), 7.60 and 8.10 (4H, 2d, *J*=8.8 Hz, *H*_{arom}); $\delta_{\rm C}$ 11.65 (s, CH₃CH₂S), 16.10 (d, *J*=6.9 Hz, CH₃CH₂OP), 30.87 (s, CH₃CH₂S), 63.30 (d, *J*=5.4 Hz, CH₃CH₂OP), 123.56 and 130.50 (2s, *o*-, *m*-C_{arom}.), 139.43 (d, *J*=8.9 Hz, C₃), 139.72 (d, *J*=20.4 Hz, *i*-C_{arom}.), 141.70 (d, *J*=175.2 Hz, C₂), 147.88 (s, *p*-C_{arom}.), 225.96 (d, *J*=9.5 Hz, C=S); Anal. Calcd for C₁₅H₂₀NO₅PS₂: C, 46.26; H, 5.18; N, 3.60; S 16.47. Found: C, 46.27; H, 5.11; N, 3.65; S 16.28.

Ethyl (*E*)-2-diethoxyphosphoryl-3-(4-trifluoromethylphenyl)propendithioate (*E*)-2c. δ_P 12.10; δ_H 1.18–1.35 (9H, m, *CH*₃CH₂S and *CH*₃CH₂OP), 3.25 (2H, q, *J*=7.7 Hz, CH₃CH₂S), 4.10 (4H, qui, *J*=7.1 Hz, CH₃CH₂OP), 7.44 (1H, d, *J*=24.5 Hz, *H*-C₃), 7.48 and 7.58 (4H, 2d, *J*=8.2 Hz, *H*_{arom}); δ_C 11.62 (s, *C*H₃CH₂S), 16.00 (d, *J*=7.1 Hz, *C*H₃CH₂OP), 30.88 (s, CH₃CH₂S), 63.79 (d, *J*=5.4 Hz, CH₃CH₂OP), 123.38 (q, *J*=272.5 Hz, F₃CAr), 125.10 (q, *J*=3.6 Hz, *m*-C_{arom}), 131.33 (s, *o*-C_{arom}), 131.80 (q, *J*=32.7 Hz, *C*CF₃), 136.68 (d, *J*=20.3 Hz, *i*-C_{arom}), 139.93 (d, *J*=177.3 Hz, C₂), 140.50 (d, *J*=9.4 Hz, C₃), 226.26 (d, *J*=9.4 Hz, C=S); Anal. Calcd for C₁₆H₂₀F₃O₃PS₂: C, 46.60; H, 4.89, S, 15.55. Found: C, 46.72; H, 5.02; S 15.14.

Ethyl (*E*)-2-diethoxyphosphoryl-3-(4-methyoxyphenyl)propendithioate (*E*)-2d. $\delta_{\rm P}$ 13.80; $\delta_{\rm H}$ 1.22–1.30 (9H, m, CH₃CH₂S and CH₃CH₂OP), 3.25 (2H, q, *J*=7.4 Hz, CH₃CH₂S), 3.78 (s, CH₃O-Ar), 4.10 (4H, qui, *J*=7.1 Hz, CH₃CH₂OP), 6.76 (2H, d *J*=8.8 Hz, *H*_{arom}), 7.32 (1H, d, *J*=24.1 Hz, *H*-C₃), 7.42 (2H, d, *J*=8.8 Hz, H_{arom}); $\delta_{\rm C}$ 11.66 (s, CH₃CH₂S), 16.07 (d, *J*=7.2 Hz, CH₃CH₂OP), 30.78 (s, CH₃CH₂S), 55.20 (s, CH₃O-Ar), 62.70 (d,

^{‡‡} The required aminals were prepared from the corresponding aldehyde according to Ref. 21.

J=5.1 Hz, CH₃CH₂OP), 113.84 and 132.34 (2s, *o*-, *m*-C_{arom}), 125.86 (d, J=20.5 Hz, *i*-C_{arom}), 134.55 (d, J=178.9 Hz, C₂), 142.33 (d, J=8.9 Hz, C₃), 160.92 (s, *p*-C_{arom}), 228.60 (d, J=9.8 Hz, C=S); Anal. Calcd for C₁₆H₂₃O₄PS₂: C, 51.32; H, 6.19; S, 17.12. Found: C, 51.03; H, 6.28; S, 17.18.

Ethyl (*E*)-2-diethoxyphosphoryl-3-(3-pyridyl)propendithioate (*E*)-2e. $\delta_{\rm P}$ 11.90; $\delta_{\rm H}$ 1.20–1.32 (9H, m, CH₃CH₂S and CH₃CH₂OP), 3.23 (2H, q, *J*=7.2 Hz, CH₃CH₂S), 4.03–4.20 (4H, m, CH₃CH₂OP), 7.17 (1H, dd, *J*=4.9, 8.3 Hz, H_{arom}), 7.35 (1H, d, *J*=23.7 Hz, *H*-C₃), 7.75 (1H, d, *J*=8.3 Hz, H_{arom}), 8.46 (1H, d, *J*=4.9 Hz, H_{arom}), 8.64 (1H, bs, H_{arom}); $\delta_{\rm C}$ 11.59 (s, CH₃CH₂S), 16.02 (d, *J*=6.9 Hz, CH₃CH₂OP), 29.90 (s, CH₃CH₂S), 63.00 (d, *J*=5.2 Hz, CH₃CH₂OP), 123.03 135.68, 150.21 and 150.88 (4s, *o*-, *m*-, *p*-C_{arom}), 129.39 (d, *J*=20.2 Hz, *i*-C_{arom}), 138.61 (d, *J*=9.1 Hz, C₃), 140.27 (d, *J*=176.5 Hz, C₂), 226.25 (d, *J*=9.2 Hz, C=S); Anal. Calcd for C₁₄H₂₀NO₃PS₂: C, 48.68; H, 5.84; N, 4.06; S, 18.56. Found: C, 48.54; H, 5.98; N, 4.46; S, 18.06.

Ethyl (*E*)-2-diethoxyphosphoryl-3-(4-pyridyl)propendithioate (*E*)-2f. $\delta_{\rm P}$ 11.40; $\delta_{\rm H}$ 1.20–1.32 (9H, m, CH₃CH₂S and CH₃CH₂OP), 3.20 (2H, q, *J*=7.4 Hz, CH₃CH₂S), 4.15 (4H, qui, *J*=7.2 Hz, CH₃CH₂OP), 7.30 (2H, d, *J*=6.1 Hz, *H*_{arom}.), 7.34 (1H, d, *J*=23.1 Hz, *H*-C₃), 8.33 (2H, d, *J*=5.9 Hz, *H*_{arom}.); $\delta_{\rm C}$ 11.45 (s, CH₃CH₂S), 15.96 (d, *J*=7.0 Hz, CH₃CH₂OP), 30.68 (s, CH₃CH₂S), 63.08 (d, *J*=6.2 Hz, CH₃CH₂OP), 123.36 and 149.82 (2s, *o*-, *m*-C_{arom}.), 139.02 (d, *J*=8.7 Hz, C₃), 140.70 (d, *J*=20.2 Hz, *i*-C_{arom}.), 142.54 (d, *J*=174.9 Hz, C₂), 225.38 (d, *J*=8.8 Hz, C=S); Anal. Calcd for C₁₄H₂₀NO₃PS₂: C, 48.68; H, 5.84; N, 4.06; S, 18.56. Found: C, 48.30; H, 5.87; N, 4.25; S, 18.19.

General procedure for the synthesis of phosphonothiopyrans 3 in a sealed tube (method A)

A solution of thiadiene 2 (2 mmol) in an excess of dienophile 5 (10 equiv.) was placed in a sealed tube and heated at 125° C for a time indicated in Table 2, the reaction being monitored by ³¹P NMR spectroscopy. The excess of dienophile was then evaporated under reduced pressure and the residue was purified as indicated in Table 2 to give the pure cycloadduct 3, isolated as a mixture of diastereomers, which were not separated.

General procedure for the synthesis of phosphonothiopyrans 3 by the pressure-promoted hetero Diels-Alder reaction (method B)

A solution of thiadiene 2 (2 mmol) in an excess of dienophile 5 (10 equiv.) was introduced in a pressure vessel, then put in the high-pressure apparatus, and left under 11 kbar at 20°C and for a time indicated in Table 2. Then, after release of pressure, further work-up and purification were carried out as above, leading to the pure product 3, isolated as a viscous liquid.

5-Diethoxyphosphoryl-3,4-dihydro-2-ethoxy-6-ethylthio-4-phenyl-2*H***-thiopyran 3a.** HRMS required for $C_{19}H_{29}O_4PS_2$ (M): 416.1244. Found: M⁺: 416.1244. *t*-3a—δ_P 16.60; $\delta_{\rm H}$ 1.00 (3H, t, *J*=7.1 Hz, *CH*₃CH₂S), 1.02–1.36 (9H, m, *CH*₃CH₂O and *CH*₃CH₂OP), 2.00–2.20 and 2.25–2.35 (2H, m, *H*-C₃), 2.95–3.10 (2H, m, CH₃CH₂S), 3.25–3.68 and 3.75–3.90 (6H, 2m, CH₃CH₂O) and CH₃CH₂OP), 4.10–4.25 (1H, m, *H*-C₄), 4.64 (1H, dd, *J*=3.6, 10.1 Hz, *H*-C₂), 7.05–7.30 (5H, m, *H*_{arom}.); $\delta_{\rm C}$ 14.60 (s, *CH*₃CH₂S), 14.97 (s, *CH*₃CH₂O), 16.00–16.17 (m, *CH*₃CH₂OP), 28.85 (s, CH₃CH₂S), 37.42 (d, *J*=8.1 Hz, C₃), 43.44 (d, *J*=10.4 Hz, C₄), 61.55 and 61.90 (2d, *J*=6.0, 5.8 Hz, CH₃CH₂OP), 65.35 (s, CH₃CH₂O), 80.33 (s, C₂), 124.00 (d, *J*=189.0 Hz, C₅), 126.60, 127.90 and 128.40 (3s, *o*-, *m*-, *p*-C_{arom}.), 142.10 (d, *J*=1.3 Hz, *i*-C_{arom}.), 147.09 (d, *J*=12.3 Hz, C₆).

c-3a— $\delta_{\rm P}$ 16.30; $\delta_{\rm H}$ 0.75 (3H, t, *J*=7.0 Hz, *CH*₃CH₂S), 1.06–1.36 (9H, m, *CH*₃CH₂O and *CH*₃CH₂OP), 2.10–2.20 and 2.47–2.57 (2H, m, *H*-C₃), 2.95–3.10 (2H, m, CH₃CH₂S), 3.25–3.68 and 3.75–3.90 (6H, 2m, CH₃CH₂O) and CH₃CH₂OP), 4.10–4.25 (1H, m, *H*-C₄), 4.85 (1H, bs, *H*-C₂), 7.05–7.30 (5H, m, *H*_{arom}); $\delta_{\rm C}$ 14.34 (s, *CH*₃CH₂S), 14.54 (s, *CH*₃CH₂O), 16.00–16.17 (m, *CH*₃CH₂OP), 29.13 (s, CH₃CH₂S), 36.45 (d, *J*=8.4 Hz, C₃), 42.10 (d, *J*=9.6 Hz, C₄), 61.52 and 61.95 (2d, *J*=6.0, 5.7 Hz, CH₃CH₂OP), 64.62 (s, CH₃CH₂O), 81.46 (s, C₂), 126.46 (d, *J*=192.1 Hz, C₅), 125.80, 127.45 and 128.42 (3s, *o*-, *m*-, *p*-C_{arom}), 142.73 (s, *i*-C_{arom}), 145.07 (d, *J*=11.3 Hz, C₆).

5-Diethoxyphosphoryl-3,4-dihydro-2-ethoxy-6-ethylthio-4-(4-nitrophenyl)-2*H***-thiopyran 3b. Anal. Calcd for C_{19}H_{28}NO_6PS_2: C, 49.45; H, 6.11; N, 3.03; S, 13.89. Found: C, 49.21; H, 6.12; N, 3.01; S, 13.76.**

t-3b— $\delta_{\rm P}$ 16.10; $\delta_{\rm H}$ 1.00–1.40 (12H, m, CH₃CH₂S, CH₃CH₂O and CH₃CH₂OP), 2.21–2.30 (2H, m, H-C₃), 2.90–3.15 (2H, m, CH₃CH₂S), 3.20–4.00 (6H, 2m, CH₃CH₂O and CH₃CH₂OP), 4.20–4.35 (1H, m, H-C₄), 4.63 (1H, dd, J=4.6, 8.0 Hz, H-C₂), 7.25 and 8.10 (4H, 2d, J=8.2 Hz, H_{arom}); $\delta_{\rm C}$ 14.55 (s, CH₃CH₂S), 14.85 (s, CH₃CH₂O), 15.60–15.70 (m, CH₃CH₂OP), 28.62 (s, CH₃CH₂S), 37.81 (d, J=7.7 Hz, C₃), 43.02 (d, J=10.3 Hz, C₄), 61.50–62.00 (m, CH₃CH₂OP), 65.41 (s, CH₃CH₂O), 79.86 (s, C₂), 122.50 (d, J=189.3 Hz, C₅), 123.65 and 128.58 (2s, *o*-, *m*-C_{arom}), 146.57 (s, *i*-C_{arom}), 148.26 (d, J=11.8 Hz, C₆), 150.65 (s, *p*-C_{arom}).

c-3b— $\delta_{\rm P}$ 15.70; $\delta_{\rm H}$ 0.70 (3H, t, *J*=7.0 Hz, *CH*₃CH₂S), 1.00–1.40 (9H, m, *CH*₃CH₂O and *CH*₃CH₂OP), 2.16–2.20 and 2.50–2.63 (2H, 2m, *H*-C₃), 2.90–3.15 (2H, m, CH₃CH₂S), 3.20–4.00 (6H, 2m, CH₃CH₂O and CH₃CH₂OP), 4.20–4.35 (1H, m, *H*-C₄), 4.85 (1H, bs, *H*-C₂), 7.23 and 7.90 (4H, 2d, *J*=8.6 Hz, *H*_{arom}.); $\delta_{\rm C}$ 14.25 (s, *CH*₃CH₂S), 14.55 (s, *CH*₃CH₂O), 15.60–15.7 (m, *CH*₃CH₂OP), 28.96 (s, CH₃CH₂S), 35.37 (d, *J*=7.9 Hz, C₃), 41.27 (d, *J*=9.5 Hz, C₄), 61.50–62.00 (m, CH₃CH₂OP), 64.65 (s, CH₃CH₂O), 80.86 (s, C₂), 122.57 and 129.22 (2s, *o*-, *m*-C_{arom}.), 124.36 (d, *J*=190.6 Hz, C₅), 146.00 (s, *i*-C_{arom}.), 146.50 (d, *J*=11.0 Hz, C₆), 151.29 (s, *p*-C_{arom}.).

5-Diethoxyphosphoryl-3,4-dihydro-2-ethoxy-6-ethylthio-4-(4-trifluoromethylphenyl)-2*H***-thiopyran 3c. Anal. Calcd for C_{20}H_{28}F_3O_4PS_2: C, 49.58; H, 5.82; S, 13.23. Found: C, 49.89; H, 5.84; S, 13.42.** **t-3c**— $\delta_{\rm P}$ 16.30; $\delta_{\rm H}$ 0.75 (3H, t, *J*=7.0 Hz, *CH*₃CH₂S), 1.02–1.18 (6H, m, *CH*₃CH₂O and *CH*₃CH₂OP), 1.32 (3H, t, *J*=7.3 Hz, *CH*₃CH₂OP), 2.18–2.34 (2H, m, *H*-C₃), 2.90–3.10 (2H, m, CH₃CH₂OP), 2.18–2.34 (2H, m, *H*-C₃), 2.90–3.10 (2H, m, CH₃CH₂OP), 3.40–3.95 (6H, 2m, CH₃CH₂O and CH₃CH₂OP), 4.20–4.30 (1H, m, *H*-C₄), 4.65 (1H, dd, *J*=3.8, 9.4 Hz, *H*-C₂), 7.18 and 7.50 (4H, 2d, *J*=7.8 Hz, *H*_{arom.}); $\delta_{\rm C}$ 14.60 (s, *CH*₃CH₂S), 15.10 (s, *CH*₃CH₂O), 16.01–16.21 (m, *CH*₃CH₂OP), 28.80 (s, CH₃CH₂S), 37.62 (d, *J*=8.0 Hz, C₃), 43.18 (d, *J*=10.3 Hz, C₄), 61.60–62.00 (m, CH₃CH₂OP), 65.48 (s, CH₃CH₂O), 80.13 (s, C₂), 123.10 (d, *J*=189.4 Hz, C₅), 124.10 (q, *J*=271.8 Hz, F₃CAr), 125.50 (q, *J*=4.0 Hz, *m*-C_{arom.}), 127.80 (s, *o*-C_{arom.}), 128.80 (q, *J*=32.5 Hz, *CC*F₃), 146.70 (s, *i*-C_{arom.}), 147.92 (d, *J*=12.0 Hz, C₆).

c-3c— $\delta_{\rm P}$ 15.90; $\delta_{\rm H}$ 0.70 (3H, t, *J*=7.0 Hz, *CH*₃CH₂S), 1.02–1.18 (6H, m, *CH*₃CH₂O and *CH*₃CH₂OP), 1.34 (3H, t, *J*=7.4 Hz, *CH*₃CH₂OP), 2.15–2.26 and 2.50–2.60 (2H, 2m, *H*-C₃), 2.90–3.10 (2H, m, *CH*₃*CH*₂S), 3.40–3.95 (6H, 2m, *CH*₃*CH*₂O and *CH*₃*CH*₂OP), 4.20–4.30 (1H, m, *H*-C₄), 4.84 (1H, t, *J*=2.5 Hz, *H*-C₂), 7.28 and 7.40 (4H, 2d, *J*=8.0 Hz, *H*_{arom}); $\delta_{\rm C}$ 14.20 (s, *CH*₃CH₂S), 14.58 (s, *CH*₃CH₂O), 16.01–16.21 (m, *CH*₃CH₂OP), 29.12 (s, *CH*₃*CH*₂S), 35.77 (d, *J*=7.5 Hz, C₃), 41.48 (d, *J*=9.8 Hz, C₄), 61.60–62.00 (m, *CH*₃CH₂OP), 64.66 (s, *CH*₃*CH*₂O), 81.17 (s, C₂), 123.05 (q, *J*=271.9 Hz, F₃*C*Ar), 124.40 (q, *J*=3.0 Hz, *m*-C_{arom}), 125.40 (d, *J*=190.0 Hz, C₅), 128.10 (q, *J*=10.9 Hz, C₆), 147.20 (s, *i*-C_{arom}).

5-Diethoxyphosphoryl-3,4-dihydro-2-ethoxy-6-ethylthio-4-(4-methoxyphenyl)-2*H***-thiopyran 3d. HRMS required for C_{20}H_{31}O_5PS_2 (M): 446.1350. Found: M⁺: 446.1348.**

t-3d—δ_P 16.70; $\delta_{\rm H}$ 1.00–1.38 (12H, m, CH₃CH₂S, CH₃CH₂O and CH₃CH₂OP), 2.05–2.25 (2H, m, H-C₃), 3.00 (2H, q, J=7.1 Hz, CH₃CH₂S), 3.05–3.60 (4H, m, CH₃CH₂O and CH₃CH₂OP), 3.70 (3H, s, CH₃O-Ar), 3.88–3.95 (2H, m, CH₃CH₂OP), 4.05–4.20 (1H, m, H-C₄), 4.65 (1H, dd, J=3.6, 10.3 Hz, H-C₂), 6.75 and 7.05 (4H, 2d, J=8.5 Hz, H_{arom}); $\delta_{\rm C}$ 14.64 (s, CH₃CH₂OP), 28.90 (s, CH₃CH₂S), 37.45 (d, J=8.6 Hz, C₃), 42.74 (d, J=10.2 Hz, C₄), 55.14 (s, CH₃O-Ar), 61.50 and 61.60 (2d, J=5.8, 5.6 Hz, CH₃CH₂OP), 65.41 (s, CH₃CH₂O), 80.48 (s, C₂), 113.80 and 128.71 (2s, *o*-, *m*-C_{arom}), 124.54 (d, J=188.3 Hz, C₅), 134.06 (d, J=1.7 Hz, *i*-C_{arom}), 146.53 (d, J=12.7 Hz, C₆), 158.26 (s, *p*-C_{arom}).

c-3d— $\delta_{\rm P}$ 16.40; $\delta_{\rm H}$ 0.80 (3H, t, J=7.0 Hz, CH_3CH_2S), 1.00–1.38 (9H, m, CH_3CH_2O and CH_3CH_2OP), 2.10–2.20 and 2.40–2.50 (2H, 2m, *H*-C₃), 3.00 (2H, q, *J*=7.1 Hz, CH₃CH₂S), 3.05–3.60 (4H, m, CH₃CH₂O and CH₃CH₂OP), 3.62 (3H, s, CH_3O -Ar), 3.88–3.95 (2H, m, CH₃CH₂OP), 4.05–4.20 (1H, m, *H*-C₄), 4.82 (1H, bs, *H*-C₂), 6.62 and 6.97 (4H, 2d, *J*=8.5 Hz, *H*_{arom}.); $\delta_{\rm C}$ 14.45 (s, *C*H₃CH₂S), 14.60 (s, *C*H₃CH₂O), 16.10–16.26 (m, CH₃CH₂OP), 29.17 (s, CH₃CH₂S), 36.60 (d, *J*=8.2 Hz, C₃), 41.48 (d, *J*=9.8 Hz, C₄), 55.14 (s, *C*H₃O-Ar), 61.40 and 61.80 (2d, *J*=5.9, 5.8 Hz, CH₃CH₂OP), 64.70 (s, CH₃CH₂O), 81.58 (s, C₂), 112.89 and 129.51 (2s, *o*-, *m*-C_{arom}.), 127.04 (d, *J*=190.1 Hz, C₅), 134.88 (s, *i*-C_{arom}.), 144.40 (d, *J*=11.0 Hz, C₆), 157.81 (s, *p*-C_{arom}.).

5-Diethoxyphosphoryl-3,4-dihydro-2-ethoxy-6-ethylthio-4-(3-pyridyl)-2*H***-thiopyran 3e. Anal. Calcd for C_{18}H_{28}NO_4PS_2: C, 51.78; H, 6.76; N, 3.35; S, 15.36. Found: C, 51.72; H, 6.64; N, 3.42; S, 15.51.**

t-3e— $\delta_{\rm P}$ 16.20; $\delta_{\rm H}$ 0.74 (3H, t, *J*=6.9 Hz, *CH*₃CH₂S), 1.01–1.20 (6H, m, *CH*₃CH₂O and *CH*₃CH₂OP), 1.28 (3H, t, *J*=7.2 Hz, *CH*₃CH₂OP), 2.25–2.40 (2H, m, *H*-C₃), 2.90– 3.15 (2H, m, *CH*₃CH₂OP), 2.30–4.00 (6H, m, *CH*₃CH₂O and *CH*₃CH₂OP), 4.15–4.28 (1H, m, *H*-C₄), 4.65 (1H, dd, *J*=4.2, 9.4 Hz, *H*-C₂), 7.20 (1H, dd, *J*=3.0, 7.8 Hz, *H*_{arom}), 7.42 (1H, d, *J*=7.2 Hz, *H*_{arom}), 7.42 (1H, d, *J*=4.8 Hz, *H*_{arom}), 8.40 (1H, bs, *H*_{arom}); $\delta_{\rm C}$ 14.03 (s, *CH*₃CH₂OP), 28.36 (s, *CH*₃CH₂O), 15.90–16.00 (m, *CH*₃CH₂OP), 28.36 (s, *CH*₃CH₂S), 37.50 (d, *J*=7.2 Hz, C₃), 40.80 (d, *J*=10.1 Hz, C₄), 61.53 and 61.76 (2d, *J*=6.3, 6.0 Hz, *CH*₃CH₂OP), 65.30 (s, *CH*₃CH₂O), 79.86 (s, C₂), 123.17, 135.00, 147.10 and 149.28 (4s, *o*-, *m*-, *p*-C_{arom}), 124.10 (d, *J*=190.0 Hz, C₅), 138.33 (s, *i*-C_{arom}), 145.80 (d, *J*=11.2 Hz, C₆).

 $c-3e-\delta_P$ 15.80; δ_H 0.74 (3H, t, J=6.9 Hz, CH₃CH₂S), 1.01–1.20 (6H, m, CH₃CH₂O and CH₃CH₂OP), 1.28 (3H, t, J=7.2 Hz, CH_3CH_2OP), 1.31 (3H, t, J=7.2 Hz, CH₃CH₂OP), 2.21 (1H, ddd, J=2.6, 6.7, 14.3 Hz, H-C₃), 2.54 (1H, dq, J=2.6, 14.3 Hz, H-C₃), 2.90-3.15 (2H, m, CH₃CH₂S), 2.30–4.00 (6H, m, CH₃CH₂O and CH₃CH₂OP), 4.15-4.28 (1H, m, H-C₄), 4.86 (1H, bs, H-C₂), 7.05 (1H, dd, J=4.8, 7.5 Hz, H_{arom}), 7.45 (1H, d, J=7.5 Hz, H_{arom}), 8.25 (1H, d, J=4.8 Hz, $H_{arom.}$), 8.40 (1H, bs, $H_{arom.}$); δ_{C} 14.03 (s, CH₃CH₂S), 14.42 (s, CH₃CH₂O), 15.90–16.00 (m, CH₃CH₂OP), 29.02 (s, CH₃CH₂S), 35.30 (d, J=7.9 Hz, C₃), 39.16 (d, J=9.5 Hz, C₄), 61.4 and 61.76 (2d, J=6.3, 6.0 Hz, CH₃CH₂OP), 65.58 (s, CH₃CH₂O), 81.05 (s, C₂), 122.13, 135.10, 146.77 and 149.76 (4s, o-, m-, p-C_{arom}), 124.83 (d, J=189.9 Hz, C₅), 138.33 (s, *i*-C_{arom}), 145.80 (d, J=11.2 Hz, C₆).

5-Diethoxyphosphoryl-3,4-dihydro-2-ethoxy-6-ethylthio-4-(4-pyridyl)-2H-thiopyran 3f. Anal. Calcd for $C_{18}H_{28}NO_4PS_2$: C, 51.78; H, 6.76; N, 3.35; S, 15.36. Found: C, 52.02; H, 6.82; N, 3.14; S, 15.02.

t-3f-δ_P 16.00; $\delta_{\rm H}$ 0.72 (3H, t, *J*=7.2 Hz, CH₃CH₂S), 1.08 (3H, t, *J*=7.0 Hz, CH₃CH₂O), 1.15 and 1.32 (6H, 2t, *J*=7.4, 7.1 Hz, CH₃CH₂OP), 2.28–2.35 (2H, m, *H*-C₃), 2.90–3.10 and 3.30–3.97 (6H, m, CH₃CH₂S and CH₃CH₂OP), 4.12–4.26 (1H, m, *H*-C₄), 4.62 (1H, dd, *J*=3.9, 9.2 Hz, *H*-C₂), 7.12 and 8.36 (4H, 2d, *J*=6.0 Hz, *H*_{arom}.); $\delta_{\rm C}$ 14.53 (s, CH₃CH₂S), 14.59 (s, CH₃CH₂O), 16.06–16.14 (m, CH₃CH₂OP), 28.73 (s, CH₃CH₂S), 37.20 (d, *J*=7.8 Hz, C₃), 42.70 (d, *J*=10.1 Hz, C₄), 61.67 and 61.75 (2d, *J*=5.8 Hz, CH₃CH₂OP), 65.46 (s, CH₃CH₂O), 80.01 (s, C₂), 122.32 (d, *J*=190.2 Hz, C₅), 123.00 and 149.82 (2s, *o*-, *m*-C_{arom}), 146.54 (d, *J*=10.9 Hz, C₆), 151.80 (d, *J*=1.7 Hz, *i*-C_{arom}).

c-3f— δ_P 15.60; δ_H 0.72 (3H, t, *J*=7.2 Hz, *CH*₃CH₂S), 1.05 (3H, t, *J*=7.1 Hz, *CH*₃CH₂O), 1.14 and 1.34 (6H, 2t, *J*=7.2 Hz, *CH*₃CH₂OP), 2.20 (1H, ddd, *J*=3.0, 6.0, 14.2 Hz, *H*-C₃), 2.57 (1H, dq, *J*=3.0, 14.2 Hz, *H*-C₃), 2.90–3.10 and 3.30–3.97 (6H, m, CH₃CH₂S and CH₃CH₂OP), 4.12–4.26 (1H, m, *H*-C₄), 4.85 (1H, bs,

H-C₂), 7.08 and 8.48 (4H, 2d, J=5.8 Hz, $H_{arom.}$); δ_{C} 14.01 (s, CH₃CH₂S), 14.43 (s, CH₃CH₂O), 16.06–16.14 (m, CH₃CH₂OP), 29.58 (s, CH₃CH₂S), 35.03 (d, J=7.8 Hz, C₃), 40.85 (d, J=9.2 Hz, C₄), 61.65 and 61.98 (2d, J=6.9, 6.6 Hz, CH₃CH₂OP), 64.67 (s, CH₃CH₂O), 80.87 (s, C₂), 124.24 (d, J=190.8 Hz, C₅), 123.89 and 148.46 (2s, o-, m-C_{arom}), 146.32 (d, J=10.8 Hz, C₆), 153.0 (bs, i-C_{arom}).

2-*tert*-**Butoxy-5-diethoxyphosphonyl-3,4-dihydro-6-ethylthio-4-phenyl-2***H***-thiopyran 3g.** HRMS required for $C_{21}H_{33}O_4PS_2$ (M): 444.1557. Found: M⁺: 444.1557.

t-3g—δ_P 17.00; $\delta_{\rm H}$ 1.00 [9H, s, C(CH₃)₃], 1.05–1.32 (9H, m, CH₃CH₂S and CH₃CH₂OP), 2.10–2.40 (2H, m, H-C₃), 2.95–3.10 (2H, m, CH₃CH₂OP), 3.70–3.95 (4H, m, CH₃CH₂OP), 4.10–4.25 (1H, m, H-C₄), 4.74 (1H, dd, J=3.8, 10.8 Hz, H-C₂), 7.05–7.20 (5H, 2d, J=8.6 Hz, H_{arom}); $\delta_{\rm C}$ 14.97 (s, CH₃CH₂S), 16.00–16.18 (m, CH₃CH₂OP), 27.90 [s, C(CH₃)₃], 28.63 (s, CH₃CH₂S), 38.09 (d, J=7.8 Hz, C₃), 43.81 (d, J=10.5 Hz, C₄), 61.71–61.90 (m, CH₃CH₂OP), 73.30 (s, C₂), 75.61 [s, C(CH₃)₃], 120.35 (d, J=189.9 Hz, C₅), 126.70, 128.05 and 128.53 (3s, *o*-, *m*-, *p*-C_{arom}), 142.20 (s, *i*-C_{arom}), 148.40 (d, J=12.0 Hz, C₆).

c-3g—δ_P 16.80; $\delta_{\rm H}$ 0.95 [9H, s, C(CH₃)₃], 1.05–1.32 (9H, m, CH₃CH₂S and CH₃CH₂OP), 2.10–2.40 (2H, m, H-C₃), 2.95–3.10 (2H, m, CH₃CH₂OP), 3.70–3.95 (4H, m, CH₃CH₂OP), 4.10–4.25 (1H, m, H-C₄), 5.03 (1H, bs, H-C₂), 7.05–7.20 (5H, 2d, J=8.6 Hz, H_{arom}.); $\delta_{\rm C}$ 14.88 (s, CH₃CH₂S), 16.00–16.18 (m, CH₃CH₂OP), 27.78 [s, C(CH₃)₃], 29.05 (s, CH₃CH₂S), 38.20 (d, J=7.9 Hz, C₃), 42.10 (d, J=9.6 Hz, C₄), 61.71–60.90 (m, CH₃CH₂OP), 74.41 (s, C₂), 75.40 [s, C(CH₃)₃], 123.14 (d, J=190.2 Hz, C₅), 125.93, 127.55 and 128.60 (3s, *o*-, *m*-, *p*-C_{arom}.), 142.80 (s, *i*-C_{arom}.), 146.50 (d, J=11.0 Hz, C₆).

2-*tert*-**Butoxy-5**-**diethoxyphosphonyl-3,4-dihydro-6-ethylthio-4-(4-nitrophenyl)-2***H*-**thiopyran 3h.** Anal. Calcd for C₂₁H₃₂NO₆PS₂: C, 51.52; H, 6.59; N, 2.86; S, 13.10. Found: C, 51.82; H, 6.89; N, 3.11; S, 12.96.

t-3h—δ_P 16.40; $\delta_{\rm H}$ 1.05 [9H, s, C(CH₃)₃], 1.08–1.28 (9H, m, CH₃CH₂S and CH₃CH₂OP), 2.10–2.15 (2H, m, H-C₃), 3.00 (2H, q, *J*=7.6 Hz, CH₃CH₂S), 3.72–3.89 (4H, m, CH₃CH₂OP), 4.28–4.40 (1H, m, H-C₄), 4.70 (1H, dd, *J*=5.4, 9.3 Hz, H-C₂), 7.33 and 8.16 (4H, 2d, *J*=8.6 Hz, H_{arom}); $\delta_{\rm C}$ 14.56 (s, CH₃CH₂S), 16.06–16.19 (m, CH₃CH₂OP), 27.82 [s, C(CH₃)₃], 28.54 (s, CH₃CH₂S), 38.50 (d, *J*=7.9 Hz, C₃), 43.73 (d, *J*=10.4 Hz, C₄), 61.60–61.92 (m, CH₃CH₂OP), 72.81 (s, C₂), 75.59 [s, C(CH₃)₃], 120.55 (d, *J*=190.7 Hz, C₅), 123.70 and 128.46 (2s, *o*-, *m*-C_{arom}), 146.66 (s, *i*-C_{arom}), 150.19 (d, *J*=12.1 Hz, C₆), 150.39 (s, *p*-C_{arom}).

c-3h—δ_P 16.10; δ_H 0.90 [9H, s, C(CH₃)₃], 1.08–1.22 (9H, m, CH₃CH₂S and CH₃CH₂OP), 1.30 (3H, t, J=7.3 Hz, CH₃CH₂OP), 2.16–2.22 and 2.40–2.51 (2H, 2m, H-C₃), 3.00 (2H, q, J=7.6 Hz, CH₃CH₂S), 4.00–3.02 (4H, m, CH₃CH₂OP), 4.28–4.40 (1H, m, H-C₄), 5.05 (1H, bs, H-C₂), 7.34 and 8.01 (4H, 2d, J=8.6 Hz, H_{arom}); δ_c 14.48 (s, CH₃CH₂S), 16.06–16.19 (m, CH₃CH₂OP), 27.52 [s, C(CH₃)₃], 28.95 (s, CH₃CH₂S), 38.50 (d, J=7.9 Hz, C₃), 42.03 (d, J=9.5 Hz, C₄), 61.60–61.92 (m, CH₃CH₂OP), 74.31 (s, C₂), 75.43 [s, C(CH₃)₃], 122.64, 129.21 (2s, *o*-, *m*-C_{arom}), 123.40 (d, J=191.1 Hz, C₅), 145.97 (s, *i*-C_{arom}), 147.86 (d, J=10.9 Hz, C₆), 151.67 (s, *p*-C_{arom}).

2-tert-Butoxy-5-diethoxyphosphonyl-3,4-dihydro-6-ethyl-thio-4-(4-trifluoromethylphenyl)-2H-thiopyran 3i. HRMS required for $C_{22}H_{32}F_3O_4PS_2$ (M): 512.1431. Found: M⁺: 512.1432.

t-3i— $\delta_{\rm P}$ 16.70; $\delta_{\rm H}$ 1.00 [9H, s, C(CH₃)₃], 1.07 (3H, t, J=7.0 Hz, CH₃CH₂S), 1.16 and 1.33 (6H, 2t, J=7.0 Hz, CH₃CH₂OP), 2.05–2.20 (2H, m, H-C₃), 2.95–3.10 (2H, m, CH₃CH₂S), 3.88 (4H, qui, J=7.0 Hz, CH₃CH₂OP), 4.20–4.32 (1H, m, H-C₄), 4.68 (1H, dd, J=4.4, 10.3 Hz, H-C₂), 7.27 and 7.55 (4H, 2d, J=7.8 Hz, H_{arom}.); $\delta_{\rm C}$ 15.20 (s, CH₃CH₂S), 16.06–16.37 (m, CH₃CH₂OP), 27.90 [s, C(CH₃)₃], 31.19 (s, CH₃CH₂S), 38.10 (d, J=7.8 Hz, C₃), 43.85 (d, J=10.6 Hz, C₄), 61.68–61.90 (m, CH₃CH₂OP), 73.06 (s, C₂), 75.70 [s, C(CH₃)₃], 121.30 (d, J=190.4 Hz, C₅), 123.56 (q, J=272.2 Hz, F₃CAr), 125.50 (q, J=3.7 Hz, m-C_{arom}.), 128.10 (s, o-C_{arom}.), 129.20 (q, J=32.9 Hz, CCF₃), 146.60 (s, *i*-C_{arom}.), 149.70 (d, J=12.2 Hz, C₆).

c-3i—δ_P 16.40; δ_H 0.88 [9H, s, C(CH₃)₃], 1.05 (3H, t, J=7.0 Hz, CH₃CH₂S), 1.18 and 1.34 (6H, 2t, J=7.0 Hz, CH₃CH₂OP), 2.10–2.08 and 2.20–2.30 (2H, m, *H*-C₃), 2.95–3.10 (2H, m, CH₃CH₂S), 3.65–3.10 (4H, m, CH₃CH₂OP), 4.20–4.32 (1H, m, *H*-C₄), 5.05 (1H, bs, *H*-C₂), 7.40 and 7.48 (4H, 2d, J=8.0 Hz, H_{arom}.); $\delta_{\rm C}$ 14.60 (s, CH₃CH₂S), 16.06–16.37 (m, CH₃CH₂OP), 28.91 [s, C(CH₃)₃], 30.55 (s, CH₃CH₂S), 39.00 (d, J=8.1 Hz, C₃), 44.00 (d, J=9.7 Hz, C₄), 61.68–61.90 (m, CH₃CH₂OP), 74.70 (s, C₂), 76.40 [s, C(CH₃)₃], 122.00 (q, J=272.1 Hz, F₃CAr), 123.40 (d, J=190.9 Hz, C₅), 125.80 (q, J=3.1 Hz, *m*-C_{arom}.), 128.80 (s, *o*-C_{arom}.), 129.01 (q, J=32.7 Hz, CCF₃), 147.70 (d, J=11.0 Hz, C₆), 147.90 (s, *i*-C_{arom}.).

2-tert-Butoxy-5-diethoxyphosphonyl-3,4-dihydro-6-ethyl-thio-4-(4-methoxyphenyl)-2H-thiopyran 3j. HRMS required for $C_{22}H_{35}O_5PS_2$ (M): 474.1663. Found: M⁺: 474.1668.

t-3j— $\delta_{\rm P}$ 17.00; $\delta_{\rm H}$ 1.00 [9H, s, C(CH₃)₃], 1.05–1.32 (9H, m, CH₃CH₂S and CH₃CH₂OP), 2.09–2.35 (2H, m, H-C₃), 2.90–3.10 (2H, m, CH₃CH₂OP), 4.08–4.20 (1H, m, H-C₄), 4.74 (1H, dd, J=4.1, 11.0 Hz, H-C₂), 6.78 and 7.05 (4H, 2d, J=8.7 Hz, H_{arom}); $\delta_{\rm C}$ 14.99 (s, CH₃CH₂S), 16.02–16.19 (m, CH₃CH₂OP), 27.95 [s, C(CH₃)₃], 28.68 (s, CH₃CH₂S), 38.12 (d, J=8.3 Hz, C₃), 43.13 (d, J=10.2 Hz, C₄), 55.28 (s, CH₃O-Ar), 61.56 and 61.70 (2d, J=5.8, 5.7 Hz, CH₃CH₂OP), 74.20 (s, C₂), 75.65 [s, C(CH₃)₃], 113.90 and 128.70 (2s, *o*-, *m*-C_{arom}), 120.31 (d, J=189.1 Hz, C₅), 134.20 (s, *i*-C_{arom}), 146.37 (d, J=12.5 Hz, C₆), 158.10 (s, *p*-C_{arom}).

c-3j— δ_P 16.90; δ_H 0.97 [9H, s, C(CH₃)₃], 1.05–1.32 (9H, m, CH₃CH₂S and CH₃CH₂OP), 2.09–2.35 (2H, m, H-C₃), 2.90–3.10 (2H, m, CH₃CH₂S), 3.68 (3H, s, CH₃O-Ar), 3.75–3.90 (4H, m, CH₃CH₂OP), 4.08–4.20 (1H, m, H-C₄), 5.01 (1H, bs, H-C₂), 6.70 and 7.10 (4H, 2d, *J*=8.6 Hz, H_{arom}.); δ_C 14.91 (s, CH₃CH₂S), 16.02–16.19 (m,

CH₃CH₂OP), 27.67 [s, C(CH₃)₃], 28.98 (s, CH₃CH₂S), 37.32 (d, J=7.8 Hz, C₃), 42.43 (d, J=9.9 Hz, C₄), 55.29 (s, CH₃O-Ar), 61.45 and 61.88 (2d, J=5.9, 5.8 Hz, CH₃CH₂OP), 75.40 (s, C₂), 75.43 [s, C(CH₃)₃], 113.00 and 129.50 (2s, *o*-, *m*-C_{arom}), 123.10 (d, J=190.3 Hz, C₅), 135.00 (s, *i*-C_{arom}), 145.40 (d, J=11.1 Hz, C₆), 158.71 (s, *p*-C_{arom}).

2-*tert***-Butoxy-5-diethoxyphosphonyl-3,4-dihydro-6-ethylthio-4-(3-pyridyl)-2***H***-thiopyran 3k.** Anal. Calcd for $C_{20}H_{32}NO_4PS_2$: C, 53.91; H, 7.24; N, 3.14; S, 14.39. Found: C, 53.82; H, 7.32; N, 3.29; S, 13.98.

t-3k—δ_P 16.50; $\delta_{\rm H}$ 0.95 [9H, s, C(CH₃)₃], 1.05–1.30 (9H, m, CH₃CH₂S and CH₃CH₂OP), 2.05–2.20 and 2.30–2.38 (2H, 2m, H-C₃), 2.92–3.10 (2H, m, CH₃CH₂S), 3.69–4.00 (4H, m, CH₃CH₂OP), 4.18–4.30 (1H, m, H-C₄), 4.72 (1H, dd, J=5.7, 9.4 Hz, H-C₂), 7.20 (1H, dd, J=4.9, 7.2 Hz, H_{arom}), 7.48 (1H, dm, J=7.2 Hz, H_{arom}), 8.29 (1H, dd, J=1.9, 4.9 Hz, H_{arom}), 8.43 (1H, bs, H_{arom}); $\delta_{\rm C}$ 14.6 (s, CH₃CH₂S), 16.01–16.17 (m, CH₃CH₂OP), 28.65 [s, C(CH₃)₃], 29.04 (s, CH₃CH₂S), 38.42 (d, J=7.6 Hz, C₃), 41.56 (d, J=10.6 Hz, C₄), 61.55 and 61.85 (2d, J=6.4 Hz, CH₃CH₂OP), 72.84 (s, C₂), 76.33 [s, C(CH₃)₃], 123.24, 135.18, 148.00 and 149.56 (4s, *o*-, *m*-, *p*-C_{arom}), 123.81 (d, J=190.9 Hz, C₅), 137.92 (s, *i*-C_{arom}), 147.34 (d, J=11.3 Hz, C₆).

c-3k—δ_P 16.10; δ_H 0.93 [9H, s, C(CH₃)₃], 1.05–1.30 (9H, m, CH₃CH₂S and CH₃CH₂OP), 2.05–2.20 and 2.30–2.38 (2H, 2m, H-C₃), 2.92–3.10 (2H, m, CH₃CH₂S), 3.69–4.00 (4H, m, CH₃CH₂OP), 4.18–4.30 (1H, m, H-C₄), 5.06 (1H, bs, H-C₂), 7.06 (1H, dd, J=4.9, 7.9 Hz, H_{arom}.), 7.52 (1H, dm, J=7.9 Hz, H_{arom}.), 8.29 (1H, dd, J=1.9, 4.9 Hz, H_{arom}.), 8.40 (1H, d, J=2.3 Hz, H_{arom}.); $\delta_{\rm C}$ 14.48 (s, CH₃CH₂S), 16.01–16.17 (m, CH₃CH₂OP), 27.81 [s, C(CH₃)₃], 29.22 (s, CH₃CH₂S), 38.55 (d, J=7.8 Hz, C₃), 39.97 (d, J=9.2 Hz, C₄), 61.55 and 61.85 (2d, J=6.4 Hz, CH₃CH₂OP), 74.50 (s, C₂), 75.46 [s, C(CH₃)₃], 122.43, 136.38, 146.49 and 149.50 (4s, *o*-, *m*-, *p*-C_{arom}.), 123.81 (d, J=190.9 Hz, C₅), 138.90 (s, *i*-C_{arom}.), 147.34 (d, J=11.3 Hz, C₆).

2-*tert*-**Butoxy-5-***diethoxyphosphonyl***-3***,***4***-dihydro***-6***-ethyl***-***thio***-4***-*(**4**-*pyridyl*)*-2H*-*thiopyran***3I**. HRMS required for $C_{20}H_{32}NO_4PS_2$ (M): 445.1510. Found: M⁺: 445.1500.

t-31— $\delta_{\rm P}$ 16.40; $\delta_{\rm H}$ 1.00 [9H, s, C(CH₃)₃], 1.12 (3H, t, J=7.1 Hz, CH₃CH₂S), 1.16 and 1.32 (6H, 2t, J=7.1 Hz, CH₃CH₂OP), 2.10–2.28 (2H, m, H-C₃), 2.95–3.10 (2H, m, CH₃CH₂S), 3.65–3.98 (4H, m, CH₃CH₂OP), 4.15–4.24 (1H, m, H-C₄), 4.66 (1H, dd, J=4.5, 10.3 Hz, H-C₂), 7.07 and 8.46 (4H, 2d, J=5.6 Hz, H_{arom}); $\delta_{\rm C}$ 14.66 (s, CH₃CH₂S), 16.11–16.30 (m, CH₃CH₂OP), 27.90 [s, C(CH₃)₃], 28.70 (s, CH₃CH₂S), 38.00 (d, J=7.6 Hz, C₃), 43.60 (d, J=10.4 Hz, C₄), 61.65–62.03 (m, CH₃CH₂OP), 73.00 (s, C₂), 76.50 [s, C(CH₃)₃], 120.30 (d, J=191.1 Hz, C₅), 122.87 and 150.03 (2s, *o*-, *m*-C_{arom}), 150.25 (d, J=12.1 Hz, C₆), 151.70 (s, *i*-C_{arom}).

c-31— $\delta_{\rm P}$ 16.00; $\delta_{\rm H}$ 0.85 [9H, s, C(CH₃)₃], 1.10 (3H, t, J=7.2 Hz, CH₃CH₂S), 1.18 and 1.34 (6H, 2t, J=7.0 Hz, CH₃CH₂OP), 2.12–2.25 and 2.29–2.40 (2H, 2m, H-C₃), 2.95–3.10 (2H, m, CH₃CH₂S), 3.65–3.98 (4H, m,

CH₃CH₂OP), 4.15–4.24 (1H, m, *H*-C₄), 5.02 (1H, bs, *H*-C₂), 7.11 and 8.35 (4H, 2d, *J*=5.6 Hz, *H*_{arom}); $\delta_{\rm C}$ 14.58 (s, CH₃CH₂S), 16.11–16.30 (m, CH₃CH₂OP), 27.60 [s, C(CH₃)₃], 29.14 (s, CH₃CH₂S), 38.25 (d, *J*=7.9 Hz, C₃), 41.65 (d, *J*=9.6 Hz, C₄), 61.65–62.03 (m, CH₃CH₂OP), 74.44 (s, C₂), 75.66 [s, C(CH₃)₃], 123.52 (d, *J*=191.2 Hz, C₅), 147.00 (d, *J*=10.1 Hz, C₆), 123.88 and 148.84 (2s, *o*, *m*-C_{arom}), 152.83 (s, *i*-C_{arom}).

5-Diethoxyphosphonyl-2,6-diethylthio-3,4-dihydro-4-(4nitrophenyl)-2*H***-thiopyran 3m.** Anal. Calcd for $C_{19}H_{28}NO_5PS_3$: C, 47.78; H, 5.91; N, 2.93; S, 20.14. Found: C, 47.82; H, 5.34; N, 2.83; S, 19.69.

t-3m— $\delta_{\rm P}$ 15.90; $\delta_{\rm H}$ 1.00–1.40 (12H, m, CH₃CH₂S and CH₃CH₂OP), 2.05–2.18 and 2.25–2.38 (2H, 2m, *H*-C₃), 2.58 (2H, q, *J*=7.2 Hz, CH₃CH₂S), 2.95–3.15 (2H, m, CH₃CH₂S), 3.65–3.95 (4H, m, CH₃CH₂OP), 4.25 (1H, t, *J*=6.6 Hz, *H*-C₄), 4.38 (1H, dd, *J*=0.8, 11.0 Hz, *H*-C₂), 7.28 and 8.15 (4H, 2d, *J*=8.4 Hz, *H*_{arom}.); $\delta_{\rm C}$ 14.74 and 14.79 (2s, CH₃CH₂S), 16.20 and 16.30 (2d, *J*=4.2 Hz, CH₃CH₂OP), 24.10 and 29.02 (2s, CH₃CH₂S), 36.70 (d, *J*=8.0 Hz, C₃), 43.03 (s, C₂), 44.50 (d, *J*=10.1 Hz, C₄), 61.70 and 62.05 (2d, *J*=6.2 Hz, CH₃CH₂OP), 121.50 (d, *J*=191.4 Hz, C₅), 123.90 and 128.80 (2s, *o*-, *m*-C_{arom}.), 146.95 (s, *i*-C_{arom}.), 149.79 (d, *J*=11.2 Hz, C₆), 150.45 (s, *p*-C_{arom}.).

c-3m—δ_P 16.10; $\delta_{\rm H}$ 1.00–1.40 (12H, m, CH₃CH₂S and CH₃CH₂OP), 2.01–2.15 (1H, m, H-C₃), 2.52–2.68 (3H, m, CH₃CH₂S and H-C₃), 2.87–2.90 and 3.03–3.17 (2H, 2m, CH₃CH₂S), 3.66–3.91 (4H, m, CH₃CH₂OP), 4.10 (1H, dd, J=2.6, 8.6 Hz, H-C₂), 4.18–4.29 (1H, m, H-C₄), 7.36 and 8.08 (4H, 2d, J=8.7 Hz, H_{arom.}); $\delta_{\rm C}$ 14.60 (s, CH₃CH₂S), 16.19 (d, J=6.7 Hz, CH₃CH₂OP), 25.55 and 28.78 (2s, CH₃CH₂S), 42.65 (d, J=9.0 Hz, C₃), 46.61 (s, C₂), 46.68 (d, J=10.1 Hz, C₄), 61.62 and 61.85 (2d, J=6.3 Hz, CH₃CH₂OP), 123.20 (d, J=189.7 Hz, C₅), 123.50 and 128.80 (2s, *o*-, *m*-C_{arom.}), 146.50 (s, *i*-C_{arom.}), 150.40 (d, J=10.4 Hz, C₆), 151.80 (s, *p*-C_{arom.}).

General procedure for the one-pot synthesis of phosphonothiopyrans 3

To a 100 cm³ flask equipped with a Dean–Stark trap and a reflux condenser were added a mixture of phosphonate **1** (1.28 g, 5 mmol), the appropriate aldehyde **6** (5 mmol) and the dienophile **5** (50 mmol) in toluene (50 cm³). Then two drops of piperidine were introduced. The reaction mixture was refluxed for a time indicated in Table 3, then the toluene was removed by distillation under reduced pressure. Further work-up and purification were carried out as above, giving the pure product **3** (Table 3).

Acknowledgements

We warmly thank Dr X. Pannecoucke, who conducted the NOE experiments. This work was supported by the Réseau Interrégional Normand de Chimie Organique Fine (Contrat de Plan Etat-Bassin Parisien-Régions Haute-Normandie et Basse-Normandie), which is gratefully acknowledged.

References

- 1. Tietze, L. F.; Kettschau, G.; Gewert, J. A.; Schuffenhauer, A. *Curr. Org. Chem.* **1998**, *2*, 19–62.
- 2. Hoffmann, R.; Hartke, K. Chem. Ber. 1980, 113, 919-933.
- 3. Lawson, K. R.; Singleton, A.; Whitham, G. H. J. Chem. Soc. Perkin Trans. 1 1984, 859–864.
- 4. Moriyama, S.; Mochizuki, T.; Ohshima, Y.; Saito, T. Bull. Chem. Soc. Jpn **1994**, 67, 2876–2879.
- 5. Saito, T.; Takekawa, K.; Takahashi, T. *Chem. Commun.* **1999**, 1001–1002.
- 6. Gosselin, P.; Masson, S.; Thuillier, A. *Tetrahedron Lett.* **1980**, *21*, 2421–2424.
- 7. Tietze, L. F.; Kettschau, G. Top. Curr. Chem. 1997, 189, 1-120.
- 8. Metzner, P. Top. Curr. Chem. 1999, 204, 127-181.
- 9. Daniel, J. R.; Whistler, R. L.; Zingaro, R. A. Phosphorus and Sulfur 1979, 7, 31–40.
- 10. Vedejs, E.; Stults, J. S. J. Org. Chem. 1988, 53, 2226-2228.
- 11. Revesz, L.; Siegel, R. A.; Buescher, H.-H.; Marko, M.; Maurer, R.; Meigel, H. *Helv. Chim. Acta* **1990**, *73*, 326–336.
- 12. Pinto, I. L.; Buckle, D. R.; Rami, H. K.; Smith, D. G. *Tetrahedron Lett.* **1992**, *33*, 7597–7600.
- 13. Adam, D.; Freer, A. A.; Isaacs, N. W.; Kirby, G. W.; Littlejohn, A.; Rahman, M. S. J. Chem. Soc. Perkin Trans. 1 1992, 1261–1264.
- 14. Aversa, M. C.; Barattucci, A.; Bonaccorsi, P.; Bonini, B. F.; Giannetto, P.; Nicolò, F. *Tetrahedron: Asymmetry* **1999**, *10*, 3919–3929.
- 15. Al-Badri, H.; Maddaluno, J.; Masson, S.; Collignon, N. J. Chem. Soc. Perkin Trans. 1 1999, 2255–2266.
- 16. Le Roy-Gourvennec, S.; Masson, S. *Synthesis* **1995**, 1393–1396 (and references cited therein).
- 17. Dell, C. P. J. Chem. Soc. Perkin Trans. 1 1998, 3873-3905.
- 18. Spino, C.; Pesant, M.; Dory, Y. *Angew. Chem., Int. Ed. Engl.* **1998**, *37*, 3262–3265 (and references cited therein).

- 19. Marvel, C. S.; De Radzitzky, P.; Brader, J. J. *J. Am. Chem. Soc.* **1955**, *77*, 5997–5999.
- 20. Hartke, K.; Hoederath, W. Sulfur Lett. 1983, 1, 191-198.
- 21. Sakoda, R.; Matsumoto, H.; Seto, K. Synthesis 1993, 705-713.
- 22. Pudovik, A. N.; Yastrebova, G. E.; Nikitina, V. I. J. Gen. Chem. USSR (Engl. Transl.) 1967, 37, 480.
- 23. Kenyon, G. L.; Westheimer, F. H. J. Am. Chem. Soc. 1966, 88, 3557–3561.
- 24. Benezra, C.; Niec, S.; Ourisson, G. Bull. Soc. Chim. Fr. 1967, 1140–1145.
- 25. Cook, M. J.; Desimoni, G. Tetrahedron 1971, 27, 257-263.
- 26. Hall, S. S.; Weber, G. F.; Duggan, A. J. J. Org. Chem. 1978, 43, 667–672.
- 27. Maier, M.; Schmidt, R. R. Liebigs Ann. Chem. 1985, 2261–2284.
- 28. Boger, D. L. In: *Comprehensive Organic Synthesis*, Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon: Oxford,
- 1991; Vol. 5, pp 451-512 (and references cited therein).
- 29. Matsumoto, K.; Sera, A. Synthesis 1985, 999-1027.
- 30. Jenner, G. Tetrahedron 1997, 53, 2669-2695.
- 31. Klärner, F.-G.; Diedrich, M. K.; Wigger, A. E. Effect of pressure on organic reactions. In: *Chemistry under Extreme or Non-classical Conditions*; Van Eldik, R., Hubbard, C. D., Eds.; Wiley: New York, 1997, pp 103–161.
- 32. Tietze, L. F.; Henrich, M.; Niklaus, A.; Buback, M. Chem. Eur. J. **1999**, *5*, 297–304.
- 33. Kirby, A. J. *Stereoelectronic Effects*; Oxford Science Publications: Oxford, 1996, p 17.
- 34. Mellor, J. M.; Webb, C. F. J. Chem. Soc. Perkin Trans. 2 1974, 17–22.
- 35. Kahne, D.; Walker, S.; Cheng, Y.; Van Engen, D. J. Am. Chem. Soc. **1989**, 111, 6881–6882 (and references cited therein).
- Tietze, L. F.; von Kiedrowski, G.; Harms, K.; Clegg, W.;
 Sheldrick, G. Angew. Chem., Int. Ed. Engl. 1980, 19, 134–135.
- 37. Tietze, L. F. Chem. Rev. 1996, 96, 115-136.